Zum subsalinaren Schollenbau im südöstlichen Harzvorland
Mit einigen Gedanken zur Äquidistanz von Schwächezonen

VON WOLFGANG JUNG, Sangerhausen
Mit 6 Abbildungen

1. Einleitung


Für zeichnerische Zuarbeit, die z. T. konstruktiver Natur war, danke ich meinen Mit- arbeitern, den Geologieingenieuren LORENZ und WENIG.

2. Die Lagerungsverhältnisse des Kupferschieferpegels zwischen Hornburger Sattel und Finne

Zu Beginn soll der Bereich der Meßtischblätter Wippra, Sangerhausen und Allstedt betrachtet werden. Dort sind durch die Grubenlagerung des Thomas-Münzer-Schachtes und der Schachtanlage Niederröblingen die Lagerungsverhältnisse des Kupferschieferpegels auf einer Fläche von mehr als 25 km² erschlossen, und außerdem stehen in unmittelbarer Umgebung der bisher verhauenen Flözfläche relativ viel Übertagebohrungen, so daß die Darstellung auf Abb. 1 den tatsächlichen Verhältnissen wohl recht nahekommt. Danach kann man die Situation wie folgt skizzieren:

Der Kupferschiefer streicht vorzugsweise erzgebirgisch und fällt vom Ausgehenden am südlichen Harzrand mit durchschnittlich 5 bis 8° nach SE ein. Lediglich westlich und südlich der Schachtanlage Niederröblingen tritt ein N-S-Streichen und ein nach E gerichtetes Einfallen auf. Eine große Anzahl von Störungen, hauptsächlich flach- und steilherzig, mitunter aber auch erzgebirgisch verlaufend, durchsetzt das Gebiet. Obwohl die Verwurfsbeträge meistens unter 10 m liegen, muß man, zumindest unter bergmännischem Aspekt, von einer intensiven tektonischen Zerstückselung sprechen.

Die bedeutendsten herzyn streichelnde Verwerfung ist die „Butterbergstörung“1), die eine Sprunghöhe bis zu 100 m erreicht. Sie stellt wahrscheinlich die nordwestliche Fortsetzung der „Nienstedter Störung“ dar. An dieser großen Dis-

---

2) Hier wie im folgenden werden für die Störungen, die größere Sprunghöhen aufweisen, interne Arbeitsbezeichnungen benutzt, die teilweise erstmalig 1960 von JUNG in einem größeren unveröffentlichten Bericht angewendet wurden und bereits in den Arbeiten von JANKOWSKI (1964) und KURKE & GÖRING (1964) erwähnt sind.
Abb. 1. Skizze der subsalinaren Tektonik für Ausschnitte der Meßtischblätter Wippra, Sangerhausen und Allstedt

1 - aufgeschlossenes Grubenfeld; 2 - Bohrungen mit Angabe der Unterkante T1 in m bezogen auf NN; 3 - Isohypsen bzw. Isobathen der Unterkante T1; 4 - Störungen, aufgeschlossen bzw. vermutet, mit Angabe der gesunkenen Schollen;
5 - Profillinie von Abb. 2
lokation ist nördlich der zwischen Röhrig- und Thomas-Münzer-Schacht verlaufenden, erzgebirgisch streichenden Flexurzone die westliche und südlich davon die östliche Scholle abgesunken. Im Bereich der NE streichenden „Beinschuhstörung“, an der wahrscheinlich das herzynische Störungssystem bajonettartig versetzt ist, muß ebenso wie an der „Grenzstörung“ und etwa 2,5 km südlich davon ein derartiger Wechsel angenommen werden. Die westliche Scholle ist im Gebiet von Schacht Nienstedt bis um 100 m relativ abgesunken.

Grenz- und Beinschuhstörung, an denen ebenfalls Verschiebungsbeträge bis zu 100 m auftreten, sind die wichtigsten erzgebirgischen Elemente. Beide fallen, wie auch ein Teil der herzyn streichenden Brüche, antithetisch ein, wie das aus dem N—S-Profil (Abb. 2) deutlich hervorgeht.

Abb. 2. NW-SE-Profil durch die Grubenbaue des Sangerhäuser Reviers (Stratigraphie des Präzehsteins unberücksichtigt)


Die Aufstellung einer Deformationsfolge für das gesamte Untersuchungsgebiet bereitet vor allem im Hinblick auf die Einordnung des normal-erzgebirgischen Elementes noch Schwierigkeiten, weshalb vorläufig auch ein Versuch unterbleibt.

Für die Existenz des rheinisch gerichteten Gonnaer Grabens, wie ihn KRIESSLING (1957) kartenmäßig auch im Subsalinar fixiert hat, fehlen meines Erachtens konkrete Anhaltspunkte.

Abb. 3. Übersichtskarte der subsalinaren Schollengliederung zwischen Hornburger Sattel und Finnestörung

1 - ausheschlossenes Grubenfeld. 2 - Störungszenen unterschiedlicher Intensität mit Angabe der gesunkenen Schollen.
3 - Isohypsen bzw. Isobathen der Unterkante T 1
Die das Bild beherrschenden tektonischen Elemente sind die Bruchzonen am NE-Rand des Kyffhäusers und am SW-Rand des Hornburger Sattels. Erstere biegt am Nordrand des Kyffhäusers nicht scharf nach W um, wie das SCHRIED (1922, 1933) annimmt, sondern mündet unter Beibehaltung der Richtung in die Südrandstaffeln des Harzes, während die zweite als Fortsetzung der Zentralen Harzstörung betrachtet werden kann (Abb. 4 u. 5). Beide, mitunter mehr oder weniger deutlich bajonettförmig abgesetzt (vgl. auch DETTE 1933), begrenzen die Südharzscholle im Sinne von SCHRIED, die im Untersuchungsgebiet gegenüber der Nordharzscholle bzw. der Thüringer Scholle bis zu maximal 1400 m, so am SW-Zipfel des Hornburger Sattels, abgesenkt ist.


Der im jetzigen Abbaufeld erkannte Baustil läßt sich auf den von den genannten drei Störungen begrenzten Teil der Südharzscholle im Prinzip mühelos übertragen, d. h., es handelt sich um eine generell nach SE geneigte Platte, die von herzyn und erzgebirgisch streichenden Dislokationen zerschnitten wird.

Es zeigt sich, daß das vorstehend genannte System der Butterberg- und Nienstedter Störung weiter nach S Sprunghöhen bis zu 400 m erreicht und neben den Randstörungen als die markanteste Schwächezone zu betrachten ist, die den etwa 20 km breiten Schollenteil halbiert.


Die östliche Teilscholle wird von der „Einsdorfer Störung“, die maximal Sprunghöhen bis zu 300 m erreicht, geteilt. An ihr ist im S die östliche und im N die westliche Scholle gesunken. Das Scharnier liegt hier an einer parallel zur Grenzstörung verlaufenden kleineren Bruchzone.

Die westliche Schollenhälfte teilende Dislokation wird „Voigtstedter Störung“ genannt. Sie erreicht wahrscheinlich Sprunghöhen bis zu 200 m. An ihr ist vermutlich in zweifachen Wechsel teils die östliche und teils die westliche Scholle die relativ gesunkene. Die Umkehrpunkte liegen wiederum im Bereich von erzgebirgisch streichenden Elementen.

Ähnlich wie in herzynen Richtung wird durch die Grenzstörung, die außerhalb des Grubenfeldes Sprunghöhen bis zu 250 m erreicht, der behandelte Schollenteil auch in erzgebirgischer Richtung in zwei etwa 10 km breite Bereiche aufgeteilt, wenn man die NW-Begrenzung in dem Störungssystem der Wippraer Zone sieht (Abb. 4). Eine weitere Unterteilung durch nahezu im gleichen Abstand von einander verlaufende Verwerfungen ist mehr als angedeutet. Der Verlauf der Grenz- und Beinschuhstörung läßt darüber hinaus vermuten, daß auch hier die Tendenz zur Bildung von dreieckigen Schollen vorhanden ist.
Insbesondere besitzt die Sangerhäuser Mulde, wie man den von bisher behandelten Bereich meist nennt, im Subsalinar keinen deutlich ausgeprägten Muldencharakter, sondern es handelt sich um ein durch verschiedene intensive, herzyn und erzgebirgsisch streichende Verwerfungen in mehreren Größenordnungen etwa abstands gleich aufgeteiltes Schollenmosaik, dessen einzelne Bausteine in mannigfacher Weise gekippt und tordiert sind.

Das westlich angrenzende Gebiet der Hermundurischen Scholle weist einen entsprechenden Baustil auf. Mit dem Abstand von etwa 10 km zwischen Kyffhäuser-NE-Rand- und Finnestörung erreicht sie die halbe Breite der Süderholzscholle und die Kyffhäuser-SW-Randstörung spaltet weiter in zwei annähernd abstands gleiche Teilschollen auf.

Daß die Hornburger Tiefenstörung ihren Charakter als eine bedeutende Fuge beibehält, muß aus mehreren Gründen gefolgt werden. So ergeben sich zunächst bis zu 200 m anwachsende Sprunghöhen. Überwiegend ist auch hier die südöstliche Scholle der relativ gesunkene Teil. Am Kreuzungspunkt mit der NE-Randverwerfung des Kyffhäuser ist es jedoch die NW-Scholle. Der Bau dieses Bereiches erweist sich im übrigen als besonders kompliziert, da an der Kyffhäuser-NE-Randstörung hier im Gegensatz zur generellen Tendenz auf eine nicht genau festzulegende Entfernung die NW-Scholle abgesunken ist.

Weiter muß darauf hingewiesen werden, daß an ihr bzw. der nach NW vorgelagerten, teils antithetisch, teils synthetisch einfallenden Verwerfung die herzynen Elemente wahrscheinlich versetzt werden und sich das Streichen der Schichten ändert. Für den SE-Teil ergibt sich entsprechend den Verhältnissen am Ausgehenden des Kupferschieferns am Bottendorfer Höhenzug steilherzynes Streichen und nach NW geneigtes Eintreffen, im NW herrscht dagegen — mit Ausnahme des westlich des Kyffhäuser liegenden Gebietes — Streichen von 70 bis 120° und südöstliches Eintreffen vor.

Schließlich muß betont werden, daß sich teilweise der Verschiebungscharakter der herzynen Störungen an diesem erzgebirgsisch streichenden Bruchsystem ändert. So ist die SW-Randstörung des Kyffhäuser südöstlich davon eine antithetische Störung mit Sprunghöhen bis zu 150 m, während sie sich im NW als Abschiebung mit Verwurfsbeträgen bis zu 200 m erweist. Die vermutlich der Finnenstörung entsprechende Dislokation ist dagegen im gesamten erkundeten Gebiet einheitlich als Abschiebung mit Sprunghöhen bis zu 100 m zu erkennen.

In welchem Umfang die SW-Randstörung des Kyffhäuser oder die mögliche südwestliche Fortsetzung der Grenzstörung an der von Schriel (1922) nach den Ergebnissen der Bohrungen Frankenhausen 1 und 2 postulierten, von N nach S gerichteten Überschiebung beteiligt sind, muß zunächst offenbleiben.

Neben den erwähnten erzgebirgsisch und steilherzyn streichenden Verwerfungen und den ihnen parallellauflaufenden Dislokationen geringer Intensität ist auf Grund der Bohrergebnisse im Gebiet von Heldungen eine größere, teilweise 200 bis 250 m Sprunghöhe aufweisende, ähnlich der Kelbraer Störung flachherzyn streichende Dislokation anzunehmen. 3)

Die Möglichkeit, daß auch im Bereich zwischen Kyffhäuser-NE-Rand-, Voigstedter und Hornburger Tiefenstörung eine entsprechende Dislokation verläuft, ist auf Grund der sich zu den erwähnten Störungen ergebenden analogen Position nicht auszuschließen. Das um so mehr, da durch die Dreiecksschollen noch eindrucksvoller hervortreten und sich außerdem noch ein an der S-Randüber-

3) Eine Bezeichnung für diese Störung soll erst nach Abschluß der Erkundungsarbeiten gewählt werden.
schiebung des Kyffhäusers eventuell beteiligtes Element anzeigen würde. Auf die Einzeichnung dieser Störung wurde aber vorläufig verzichtet, weil sich die Verhältnisse noch in der weniger komplizierten Form darstellen lassen. Inwieweit doch eine Änderung der jetzigen Konzeption notwendig sein wird, werden vielleicht schon die noch zu erwartenden Bohrergebnisse zeigen.

Obwohl im Bereich der Süderharzscholle südöstlich der Hornburger Tiefenzörung nur wenig Bohrungen die Unterkante des Kupferschiefers erreicht haben, besteht kein Anlaß, einen anderen als den vorstehend skizzierten Baustil anzunehmen. Übersieht kann man begründet vermuten, daß die Butterberg-Nienstedter und die Voigtstedter Störung, an der großen erzgebirgischen Naht wiederum versetzt, weiter nach SE anhalten.

3. Zum subsalinaren Bau der Mansfelder Mulde

Inwieweit ergeben sich aus den beschriebenen Verhältnissen Analogien zur Mansfelder Mulde?


Zunächst muß darauf hingewiesen werden, daß die Entfernung zwischen der SW-Randstörung des Hornburger Sattels und dem Störungssystem der NE-Flanke der Mansfelder Mulde, an dem Absenkungsbeträge bis zu 700 m festgestellt wurden, etwa 20 km beträgt. Damit entsprechen sich in dieser Beziehung Nord- und Süderharzscholle.


Die durch den Freieslebenschächter Flözgraben generell um etwa 50 m abgesunkene westliche Teilscholle wird durch den mehrfach nach NE versetzten Martinsschächter Flözgraben im NW zunächst halbiert. Im SE dagegen ergeben sich unter Berücksichtigung der Flexurzone am NE-Rand des Hornburger Sattels drei annähernd gleich breite Schollenteile. Damit ist die Tendenz zur Bildung von
Abb. 4. Übersichtskarte der subsalinaren Schollen-gliederung zwischen Hallescher Marktplatzverwerfung und Finnestörung

1 – aufgeschlossenes Grubenfeld, 2 – Störungszenen unterschiedlicher Intensität mit Angabe der gesunkenen Schollen, 3 – Isohypse bzw. Isobathen der Unterkante T 1
Dreiecksschollen innerhalb der herzyn streichenden Leistenschollen wiedertum unverkennbar.

Die Nordostscholle der Mansfelder Mulde wird durch die „Zimmermanns- schächter Störungszone“, das ist für das Grubenfeld der Bereich der „falten- artigen Schichtverbiegungen“ im Sinne von BLEI (1961), ebenfalls in zwei etwa gleich breite Leistenschollen aufgeteilt. Ähnlich wie am Martinsschächter Floßgraben und den herzynen Störungszenen der Südrharzscholle ist auch an dieser Bruchzone, die Sprunghöhen bis zu 200 m aufweist, teils die östliche und teils die westliche Scholle relativ gesunken.

Die Scharniere liegen hier ebenfalls im Bereich von erzgebirgisch streichenden Störungszenen. Ich zweifle nicht daran, daß es sich dabei um die Fortsetzung der westlich des Hornburger Satells erkennnten Elemente handelt, obwohl ihr Bruchcharakter im Westteil der Mansfelder Mulde nicht offensichtlich wird. Ähnlich wie im Bereich der Südrharzscholle fallen sie auch hier vorzugsweise antithetisch ein, und der NW-Teil der Einzelschollen ist in der Größenordnung von 20 bis 70 m aufgeklappt. Die als Fortsetzung zwischen Thomas-Münzer- und Röhrig- schacht verlaufenden Flexurzone anzuschließende Störung tritt im NE-Teil der Mansfelder Mulde dagegen als kräftige synthetische Abschiebung mit Sprunghöhen bis zu 300 m in Erscheinung.


4. Bemerkungen zur Äquidistanz größerer Störungszenen im Bereich der Sächsisch- Thüringischen Großscholle und daran angrenzender Gebiete

Abb. 5. Karte der saxonischen Schollengliederung zwischen Thüringer Wald und Subsudetischem Wall mit Hervorhebung der im Abstand von rd. 60 km bzw. 30 km auftretenden herzynen Bruchsysteme

Nach Carlé (1952, 1955) ergeben sich im Bereich der SW-deutschen Großscholle zwischen bedeutenden Störungszonen Abstände von etwa 60 km. Das Ergebnis der Überprüfung, ob auch in der Fortsetzung nach NE — den Bereich der Sächsisch-Thüringischen Großscholle und der Schlesiischen Scholle betrachtend — jeweils nach ungefähr 60 km (+ 10 km) größere Dislokationen auftreten, ist überraschend. Es folgen nämlich, von der Untersuchungsgrenze Carlés am SW-Rand des Thüringer Waldes ausgehend, nachstehend genannte Bruchsysteme (vgl. Abb. 5):

2. Harznordrandstörung — Hallesche Marktplatzerwerfung mit der vermutlichen Fortsetzung bis zur „Flöhatal-Synklinalz“
3. Abbrüche von Haldensleben und Wittenberg—Elbelinie,
4. Lusatier Hauptabbruch,
5. NE-Randstörung des Subsudetischen Walls, die eventuell in den herzynen Störungen im Bereich der Struktur Spreenhagen — Langewahl ihre Fortsetzung findet.

Insgesamt gewinnt man den Eindruck, daß nach N ein gewisses Abdrreben in westliche Richtung erfolgt.

Die durch die erstgenannte Störungszone abgetrennte Scholle wird durch die Eichenberg—Gotha—Saalfelder Störung und das die Frankenwälder Querzone begleitende Störungssystem halbiert. Für die südwestliche Teilscholle ergeben sich durch die Nordrandstörung des Thüringer Waldes 20 km bzw. 15 km resp. 10 km breite Teile, während beispielsweise durch die Randverwerfungen des Thüringer Waldes und die Kehltal- und Heidersbacher Spalte drei je etwa 5 km breite Schollenteile entstehen. Die Aufzählung von weiteren Details kann unterbleiben, da nur gezeigt werden sollte, daß sich den Verhältnissen im Harzvorland entsprechende Beispiele unschwer finden lassen.


In erzgebirgischer Richtung kann ebenfalls (vgl. Abb. 6), wenn auch nicht so deutlich wie in herzyner, im Abstand von ungefähr 60 km eine Großgliederung durchgeführt werden. Es ergeben sich vom Erzgebirgsabbruch ausgehend nach NW folgende Bruchzonen:

1. Nordrand Münchberger Gneismasse — Südrandstörung Granulitgebirge. SE-Abbruch der Struktur Mulkwitz — NW-Rand Subsudetischer Wall,
Abb. 6. Karte der saxonischen Schollengliederung zwischen Thüringer Wald und Subsudetischem Wall mit Hervorhebung der im Abstand von ungefähr 60 km auftretenden erzgebirgischen Bruchsysteme
2. Langebergverwerfung — „Lützener Störung“ — „Störungssystem von Doberlug“,
3. Randstörungen der Metamorphen Zone des Unterharzes — „Störungssystem von Mittenwalde“,
4. Störungen am Oberharzer Diabaszug und an der Struktur Golbitz.

Es ist danach nur zu wahrnehmen, zumindest auch die Elbe-Sigmoide im Sinne von H. Kölbel (1954) sichtbar wird, daß die genannten Störungssysteme altangelegte, mehrfach aktivierter Tiefenbrüche sind.


Die begonnene Durchsicht der Literatur gibt mir schon jetzt allen Anlaß zu der Vermutung, daß der hier skizzierte äquidistante Leistenschollenbau der Sächsisch-Thüringischen Großscholle und der Schlesischen Scholle, zumindest den 60-km-Abstand betreffend, sich nach NE bis zum Pommerisch-Kujawischen Wall fortsetzt und auch in Norddeutschland, Dänemark und Schonen vorliegt. Bekanntermaßen überwiegt dort gebietsweise die rheinische Richtung, aber diese Kräfte Linien treten ebenfalls in entsprechenden Abständen auf.

Auch die Übersichtskarte der CSSR von Svoloda (1963) läßt herzyn, rheinisch und erzgebirgisch streichende Störungssysteme im Abstand von 60 km, 90 km und 120 km deutlich hervortreten, während die von Schmidt (1956) gegebene kartenmäßige Übersicht von Ungarn 4) vorzugsweise in erzgebirgischer Richtung bemerkenswerte Analogien aufweist.

Es muß aber auch erwähnt werden — erste diesbezügliche Gedanken hat mein Mitarbeiter Lorenz geäußert —, daß bei der Vertikalgliederung der Kruste ähnliche km-Abstände auftreten. Sicher ist es mehr als ein Zufall, daß die Mittel- und Mohorovičić- und Conrad-Diskontinuitäten in Tiefen von ungefähr 60 km bzw. 30 km resp. 10 km vermutet werden und die isostatische Ausgleichsfläche bei 120 km angenommen wird.

Da man Lineamentabstände von 1200 km, 1800 km, 2400 km und 3000 km feststellen kann (vgl. z. B. Stille 1949 und Hills 1956), lassen sich dafür wohl auch Beziehungen zu den tiefen Unstetigkeitsflächen der Erde vermuten.

Insgesamt erscheint jedenfalls die weitere Beschäftigung mit den Problemen der Äquidistanz von Schwächezonen sehr ratsam, zumal sich daraus einige für die Praxis wichtige Schlußfolgerungen ableiten lassen.

Nachtrag

Erst während der Drucklegung habe ich die „Mechanik der Erde“ von R. A. Son- der (1956) gelesen. Besonders auf seine Erörterungen über die Rhegmenagene soll hier hingewiesen sein. Im Sinne des Dargelegten ist von Belang festzuhalten, daß „die mechanische Theorie der Klüftung neben geometrischer Richtungskoordination auch das Auftreten äquidistanter Perioden verlangt“. Wenn auch die

4) Freundlicher Literaturhinweis von Herrn Prof. Dr. Hoppe.
Zum subsalinaren Schollenbau


Diese Aspekte lassen in Ergänzung zu dem auf S. 266 Gesagten vermuten, daß auch die SW-Fortsetzung der rd. 60 km breiten Mitteldeutschen Kristallschwelle (Brinkmann 1948) und vielleicht die größeren Baueinheiten der Varisziden überhaupt von tiefreichenden Brüchen begrenzt werden. An der Tiefenwirkung und der alten Anlage bedeutender herzyn streichender Brüche des zentralen Mitteleuropa läßt sich mit G. Richter-Bernburg (1949) kaum zweifeln. Das theoretisch geforderte grundlegende globale Bruchsystem der Kruste ist dann auch im behandelten Ausschnitt zu erkennen.

„Das übergeordnete N-S-Element“ (Richter-Bernburg 1949) tritt in bedeutenderen Geofrakturen in NW-Europa nach H. Cloos (1947) in Abständen von 250 km, 300 km und 350 km, also von rd. 4-, 5- und 6-mal 60 km auf. Im Abstand von rd. 300 km scheint für ganz Europa eine übergeordnete Größe der Äquidistanz vorzuliegen.

Zusammenfassung


Summary

A description is given of the classification of subsaliniferous blocks in the area between the saddle of Hornburg and Finne, which was explored by numerous mine exposures and exploratory drillings for copper slate. It consists of several bench blocks which differ by their extent, strike in a Hereymian direction and are separated by approximately equal distances. They are infiltrated by transverse elements from the Erzgebirge of almost equal distance too. This division of fields can also be recognized in the subsaliniferous beds of the Mansfeld trough.

Similar to the Southwest German block it is shown that major dislocations took place at a distance of about 60 km in the large Saxo-Thuringian and in the Silesian block. Another equidistant partition in accordance with the conditions prevailing in the foreland of the Hartz Mountains is more than intimated. Remarkable analogies resulting from the maps of Hungary and Czechoslovakia are also supposed for the subsaliniferous bed of the North German-Polish depression. Reference is also made to relations indicating the vertical classification of the crust.
Резюме

Для разведанной многочисленными подземными горными выработками и разведочными сважинами на медистые сланцы между седловиной Горнибург и Финне области описывается подсолевое глибовое расчленение. По этим данным мы имеем дело с несколькими, но размерами различными, простирающимися в географическом направлении, имеющими между собой примерно одинаковое расстояние, лейсто-выми глыбами, которые пересекаются рудногорными поперечными элементами на примерно таких же равных расстояниях. Это пространственное разделение можно найти и в подсолевых комплексах Мансфельдской мульды.

Подобным образом как для юго-западной германской глыбы доказывается, что и в саксонско-торингенской большой глыбе и в сцекской глыбе наблюдаются на расстояниях в примерно 60 км более значительные дислокации. Дальнейшее расчленение с подобными расстояниями, соответственно соотношения в предгорье Гарца, намечается более четко. Из карт Венгрии и ЧССР следуют интересные аналогии, которые предполагаются также для подсолевого комплекса северогерманского впадины. Даются указания и на намечаемые в связи с этим взаимоотношения с вертикальным расчленением коры.

Literatur


— Anlage und regionale Stellung des saxonischen Beckens. — Erdöl-Tektonik Nordwest-
deutschland, Hannover 1949.
Richter-Bernburg, G., & W. Schott: Die nordwestdeutschen Salzstöcke und ihre Be-
Schmidt, E. R.: Tektonische Studien aus dem ungarischen Zwischengebirge, als Beispiel
zur theoretischen und praktischen Anwendung der Geomechanik. — Geotekt. Symposion
Landesanst., N. F., 93, 1–65, Berlin 1922.
— Die tektonischen Beziehungen zwischen Harz und Kyffhäuser. — Jb. preuß. geol. Landes-
e. V., N. F., 49, Hannover 1954.
Schwarz, M.: Tektonische Untersuchungen im Permokarbon nördlich von Halle/Saale. —
Schwan, W.: Querschollenbau in einem Teil des variszischen Gebirges (Thüringisch-Vogt-
ländisches Schiefergebirge) mit einem Ausblick auf andere Gebiete. — Geol. Rdsch., 46,
Steinbrecher, B.: Die Subsumion des Zechsteingebirges im östlichen und nordöstlichen Harzt-
vorland mit besonderer Berücksichtigung der Edderitzer Mulde. — Geologie, 8, 5, 489–522,
Berlin 1939.
Berlin 1949.
— Zur Hartsalzerkundung im Kalisalzlager Staffurt unter besond. Berücksichtigung des Sü-
Hannover 1957.
Vetter, H.: Die Bedeutung der Schollentektonik Mitteldeutschlands für die Entstehung der
1955.
Weigelt, J.: Der tektonische Unterbau der Mitteldeutschen Hauptscholle. — Beitr. Landes-
kunde Mitteldeutschlands, Festschr. 23. deutsch. Geographentag in Magdeburg, Brauns-
weig 1929.
dad geologiczny, 6, 1, 17–22, Warschau 1958.
Zeidler, W.: Neue Untersuchungsergebnisse von der Nordostbegrenzung des westlichen
Schlotheimer Grabens unter besonderer Berücksichtigung der erzgebirgisch streichenden

Geologische Karten

Deubel, F., & H.-J. Martini: Geologische Übersichtskarte von Thüringen im Maßstab
1:500000. — Gotha [ohne Angabe des Erscheinungsjahres].
Kölbel, H.: Geologische Karte der Deutschen Demokratischen Republik im Maßstab
— Leipzig 1930.
SchrieI, W.: Kleine geologische Karte von Deutschland im Maßstab 1:2000000. — Berlin
1930.
Zum subsalinaren Schollenbau

Atlas Geologiczny Polski im Maßstab 1:1000000, insbesondere Tablica 4 von W. POZARYSKI &

Literatur-Nachtrag

KURZE, M., & H. GÖRING: Ein Beitrag zur Geologie der Stickstoff- und Kohlenwasserstoff-
vorkommen im Bereich der Sangerhäuser und Mansfelder Mulde. — Freib. Forsch.-H.
REUTER, F.: Die regionalgeologische Stellung der Flechtingen-Rohrblauer Scholle. — Geologie,
SONDER, R. A.: Mechanik der Erde. — E.-Schweizerbartsche Verlagsbuchhandlung, Stuttgart
1956.
VOIGT, E.: Das Norddeutsch-Baltische Flachland im Rahmen des europäischen Schollen-
— Über Randtröge vor Schollenrändern und ihre Bedeutung im Gebiet der Mitteleuropäischen